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The Knowledge Representation Project at ISI

Robert Mac Gregor
John Yen

USC/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292

1. Introduction
ISI's knowledge representation research can be divided into two phases. The

initial phase produced the NIKL classifier, which was the first system anywhere to
provide a competent and efficient capability for inference applied to terminological
knowledge. The second phase began with a study of how NIKL could be improved, and
is now in the process of producing LOOM, a new knowledge representation system with
significantly broader inference capabilities. This paper addresses these two efforts,
beginning with a discussion of the need for adequate knowledge representation.

We begin by describing the features we require in a competent knowledge
representation system. We argue that systems such as relational DBMSs or theorem
provers do not meet these criteria, in-as-much as they provide only a part of the
inferential capabilities needed by some of today's Artificial Intelligence (AI)
applications. We then describe the architecture which has evolved in the family of
knowledge representation systems which trace their ancestry back to the KL-ONE
system, and introduce the notion of a classifier. Next, we will present more detail on
the kind of technology that has grown up around classification-based knowledge
representation systems. We explain what ISI's earlier contribution has been to this
technolDgy, and list some of the applic.tions which use this technology. Finally, we
describe the current research being carried out by ISI's knowledge representation
project, and we describe some future plans for ISI's research in knowledge
representation.

2. Competent Knowledge Representation Systems
The field of knowledge representation concerns itself with (1) providing a means

for representing knowledge within a computer, and (2) providing mechanisms that can
produce useful inferences based on the resulting knowledge structures.

The first examples of knowledge representation in Al were ad hoe systems
constructed to meet the requirements of particular applications. In a typical system
there were no well-defined semantics [Woods 75], and the knowledge was not re-usable,
so that there was little that might be called a knowledge representation technology---
knowledge representation consisted mainly in defining and manipulating data
structures.

- - • ' . , , . i i I I I I 1
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A principal argument found in the literature that has evolved since the advent of
the I'KL-ONE knowledge representation language [Brachnian an Schtnolze 85] is that a
la 1( , 1/IJe should be designed specifically for the purpose of representing k nowledge. I,-
ONE was designed to represent the kinds of knowlodge constriicts encountered by
developers of natural language processing systems. The :availability of a knowledge
represenwitation lnnuage a i lows its users the freedom to inanipulate and question a
knowledge base with ) t having to be familiar with either the dutie .s1cit etares use(d to
represent the krnowl,,,ge. or with the tnference mtccanisnms that interpret requests
front the user. Anlnalugy can be drawn with the field of database management
.svstein>.- (1)I.'- lhre. the advent of the relational model and relational query
latigunges was her-ilet :u., a major improvement (over the network models used in
earlier database systeins.

The advent of KL-ONE spawned a lot of concentrated activity in knowledge
representation. Several high-level principles emerged, which strengthen our notioh Xf
the important components that constitute a competent knowledge representation
system:

1. An expressive1 and high-level language should exist for representing both
terminological and -ssertional knowledge. 2

2. The language should be accompanied by a rigorous sematitic definition.

3. The system should provide competent inference mechanisms which respond
to user requests about any knowledge entered into the system's knowledge
base.

We will examine each of these criteria in turn -s they apply to (1) a relational
DB.%I; (2) a logic-based system (e.g., Prolog or a generic theorem prover); and (3) one
of the more robust descendants of KL-ONE.

.\ highly expressive language places few restrictions on what kinds of knowledge can be represented.

a language with low expressivity allows only a few simple kinds of knowledge to be represented.
2T rmmiologial knowledge consists of the definitions of the terms in some domain. e., the term girl

miight b defined as the conjunction of the terms child and female; assertioiial knowledge consist., of
't;o,,'ntnts about the way things are in the world, e.g-, the statement (girl Nancy) asserts that the
objct denoted by the symbol Nancy satisfies the predicate girl. In a relational BIMS, the schema
de-finitions repr#,,sfnt terminological knowledge, while the tuples in the database represent assertional
knowledge.
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An Expressive High-Level Language

The degree of expressiveness provided by a relational DBMS is relatively low, and
therefore such systems do riot meet our first criterion. By contrast, a logic-based system

using some variant of first-order logic (FOL) as its knowledge representation language
does exhibit a high-degree of expressive power. Yet, [Brachman 82] and [Brachman,
Fikes, and Levesque 83] argue that one can design languages that are more suitable than
FOL for representing terminological knowledge. Languages such as KL-ONE, NIKL,

and LOOM provide a rich syntax for defining terms. In each case, however, this syntax
is not particularly appropriate for expressing assertional knowledge. Thbs. the type of

knowledge representation system that we advocate contains two sublanguages: a
terminological language such as one of the languages just mentioned, and a separate

assertional language assumed to be some subset of FOL.

A Rigorous Semantic Definition

The semantics of the terminological (schema) portion of a relational DBMS is
almost non-existent, so it is rigorous by a vacuous argument. On the other hand, a

great body of theoretical literature has discussed the semantics of the assertional

component of a relational DBMS. Logic-based systems, of course, have an impeccably
rigorous semantics for both the terminological and assertional components, up to the
point where they introduce extra-logical operators (e.g., Prolog's "cut" operator), at
which point they abandon their claim to rigor.

Several rigorous semantic definitions have been worked out for KL-ONE-like

languages. [Schmolze 85] describes a set-theoretic semantics for NIKL; [Brachman,
Fikes, and Levesque 83] describes a semantics for KRYPTON based on logical

entailment. Appendix A illustrates the semantics for the terminological component of

LOOM.

Competent Inference Mechanisms

A relational DBMS possesses a query facility that is able to answer queries about
its assertional knowledge. However, it has no capabilities whatsoever for reasoning with

terminological knowledge. A logic-based system's ability to reason with assertional

knowledge is in general very good (ignoring possible questions of efficiency). However,
they both have trouble reasoning with terminological knowledge. There are two sources

of difficulty. First, a terminological definition is equivalent (from a reasoning
standpoint) to a universally-quantified bi-conditional proposition. Logic systems
traditionally have difficulties in dealing with bi-conditionals (e.g., they cannot even be

expressed in Prolog). 3 Second, some of the questions we would like to have answers to
(e.g., what other terms are implied by the term "battle-situation") are second-order

3 From a formal standpoint, the Prolog language does not possess a capability for defining terms.
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questions that are generally beyond the scope of today's theorem provers.

The classifier is all inference mechanism developed specifically for answering
questions about analytic relationships between terns. Its prin(ipal function is to
compute subsumption relationships between terms.1 In addition to providing question-
answering capability, a classifier is typically used to organize all of the terms defined for
a knowledge base into a taxononv in which more general ternis are placed above more
snecifhe ones. Tihis ca pability for self-organization isone of the most striking features of
his iype of svstei. Sect ion 6 lists a inutimher of' a pplieations where the infeirential

(a pahilities of a classifier have proven to he useful.

11ybrid systems, which utilize a classifier to reason with terminological knowledge,
and which possess a separate (more traditional) inference mechanism for reasoning with
assertional knowledge. are the only systems in use today that demonstrate inferential
competence for both terminological and assertional knowledge. \Ve expect that as the
abilit, to reasoh with "meta-level" (terminological) knowledge becomes less of a dream
and more of a reality in Al systems, the demand will increase significantly for
knowledge representat ol systems that display inferential competence at the
terminological level. Appendix B is a matrix containing a feature analysis that
summarizes our evaluation of four classes of knowledge representation systems.

3. Classification-based Technology
This section describes more of the technology now associated with those

knowledge representation systems that center their inference capabilities around a
classifier. We review some of the theoretical results derived during the evolution of this
technology, and describe the impact that these results have had on the design of
practical systems. This section concludes with an examination of the criteria used to
determine where the line that divides the TBox and ABox knowledge spaces should be
drawn.

The component of a system that deals with terminological knowledge is commonly
called a "TBox," while the component that manages assertional knowledge is called an
"AI3ox." Clearly, it is necessary that some facility be provided which "bridges the gap"
between the TBox and the ABox. Classification-based hybrids incorporate a component
called a recognizer (also called a "realizer"), which serves to relate ABox knowledge to
TBox knowledge (see [Vilain 85]). A recognizer is the dual of a retrieval mechanism:
Given a (TBox) concept, a retrieval mechanism is able to find all (ABox) instances
belonging to the extension of that concept; given an ABox instance, a recognizer is able
to produce all TBox concepts that include that instance in their extensions (i.e., all

'IA tern A .ubsumes another term 13 if instances (members of the extension) of B must also be
instances of A.
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concepts that describe that instance). 5  More prosaically, a recognizer can answer
questions such as "Tell me everything you (the system) know about John Q. Public," or
"Tell me what you know about the current status of this steam turbine."

Two distinct reasoning components, a classifier and a recognizer, form the basis
of the architecture of our hybrid systems. Typically, the recognizer utilizes the classifier
to perform the most difficult (from an engineering standpoint) of its inferences, so the
scope and power of the over all system depends most heavily upon the abilities of its
classifier. Originally, designers ot" classifiers intended that the mechanism for testing
suIbsunlption relatioinships between TBox concepts should be sound, complete, an(l
should run in polynomial time, i.e.. it should be tractable. Unfortunately, theoretical
analyses of' various candidate TBox languages [Brachman and Levesque 8.4].
[Patel-Schneider 87] has revealed that tractability can only be achieved for cery

restricted ("impoverished") TBox languages. These theoretic results guarantee (unless
P=NP) that the desirable goals of soundness, completeness, tractability, and a
reasonably high degree of expressivity (in the TBox) cannot be simultaneously achieved.

Systems that are both principled and reasonably efficient require soundness and
tractability to be retained, and thus the design choice to be made is a trade-off between
completeness and expressivity. Most of today's classifiers have opted to sacrifice
completeness in favor of expressivity because of the real demands placed on knowledge
representation by today's intelligent systems. It is generally more usefui to have a
system capable of providing some information in a timely manner than to have a
guarantee that you will get a complete answer eventually.

With this brief background, we can now address the question "How do we decide
what knowledge goes in the TBox, and what goes in the ABox, i.e., where should we
draw the line?" The answer has an empirical basis, rather than a theoretical or
philosphical one: We desire a fairly expressive TBox language. On the other hand, we
de ".,t :,u 1 :u.i- , a ... as....cat>. system can "triist" it, to find what they regard as all
"reasonable" inferences (while realizing that oir TBox classifier will miss somp
inferences (classifications) due to the fact that it is necessarily incomplete). Put another
way. within the limits established by the degree of expressiveness of the TBox language,
the classifier should be "as smart as its users."

There has been a good deal of experimentation to find a satisfactory set of
primitives (together with a set of algorithms for reasoning with those primitives).
Within the community, a consensus has been reached on the choice of the more basic
operators. However, these experiments have tended to stay within the bounds of
expressivity first established by KL-ONE. One of LOOM's major contributions is to
demonstrate the successful incorporation of several new primitives which significantly

5 This statement is not quite accurate---if the classifier is not completc, then some inferences may be
missed, i.e., some, but not all, concepts will be found.
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exo.d h LIaidages expressivitv while rnaintainin- overall inferential completence and1

4. An Example
To in :kv hliln s iSil clearer, wve prosen Iin e i xanilb , that 11ilit rates C )ie

poss-;hle ap1)pliatiloll ot, a classifier. WVe first -,ketch uut (lit, problerm, wvinch 1.- to

coust mel(t a model of a inunclea r reactcor, a nd in vent n pnria Iii aI et liod ology for howv !I li

inodI'! is to he conlstructd. .Next . \ve r-til through-1 a scelnrio cont-ainlimig a few rfmiit

of, '11,1 a utlodt.. Viii:ill v, %ve discuss, the broaicr Iifili1clationis ol1 illH :qpprich to

tlodcIC-blliii iii. :1mid provide Somte coiiniflcint :rv onl t li tvp f (dJ~ tb> x 1ii ]

the 'asle'

Our mo~del of a reactor has been constructed bY first bi)Li*ng*11 a r(eactor mrodel
coisting of abstract descriptions of its various coli ponle its, a111d thenl refilnilhg or

instantiating the components. In our- scenario, one or a team of' more e!xiereicc.
designers have initially created a knowledge base containing (1) fuilly-abstract concepts
such as "reactor part" and "pressurized fluid"; (2) "guidance rules," 'vhi-l help to
guide partially deflined concepts into their proper place in the model: and (3) "'safety
rules." which can be invoked to verify that newly defined components obey speciflc
safety criteria. We imagine that the initial model is turned over to a team of (posmsibly
less-experienced) modellers who will develop an iin.reasingly accurate design of an actual
reactor. The rules defined up-front help to insure the consistency and correctness of the
system built during this second phase.

Below is a fragment of a model, expressed in the LOOM language. 6 Below that is
an English explanation of each of the LOOM constructs.

;Model of Reactor:
Elil (defconcept Reactor-Part)
£21 (defconcept Pressurized-Part

:Is (:and Reactor-Part (:exactly 1 psi))
constraints (:exactly 1 max-rated-psi))

[31 (defconcept Pressurized-Fluid)
£41 (defconcept~ Reactor-Coolant :is (:and Pressurized-Fluid :primitive))

Guidance Rules:
[5] (implies

(:and Rea~ctor-Part (;the type of--fliv Pressurized-Fluid))
Pressurized-Part)

;;Safety Rules:
£61 (defconcept :is Reactor-Part

disjoint-covering (Safe-Part Unsafe-Part))
[71 (implies

(:and Pressurized-Part Safe-Part)

6 Note: Appendix A summarizes the LOOM constructs used to synthesize concept definitions.
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(<- psi max-rated-psi))
[8] (:implies (:and Safe-Part

(:the type-of-fluld Reactor-Coolant))
(>= psi 10))

Descriptlro t f Specific Part:
[9] (defco:cQpt Reactor-Outlet-Plping :is (:and Reactor-Part :primitive)

:constraints ((= max-rated-psi 5)
(.the type-of--fluld Reactor-Coolant)))

rnglish expl;i'iti(mI of this Ied'el:

r!i There is aj cotceipt (-alled a "r,,:U,., part ' ;

[21 X is a " pressuriz el t rt " ll- 2.)-(A)NL-IF X is a reactor part an X has the

]V N i- a pre.ssurized tat'I TIIXN N has an attribute "na,-rated-psi":
1 ihere s : cc Ip c'll,., :I " r,' .,s irlzel rluid'";

Ati A "reactor coolanlt" is a particllar kind of pressurized fluid:

5 IF X is a re:ctor part and the value of "type-of-fluid" for X is
"pressurized fluid" TII'LN X is a pressurized Dart;

V \ re.ac-tor part is either a safe part or an unsafe part, but not both;
[7} IF X is both a reactor part and a safe part THEN

the value of X for "psi" is not greater than its value for "max-rated-psi";
[81 IF the value of "type-of-fluid" for X is "reactor coolant" and X is a

safe part THEN the value of "psi" for X is at least 10;

[9] A "reactor-outlet-piping" is a particular kind of reactor part;
IF X is a reactor-outlet-piping THEN the value of "max-rated-psi"
for X equals 5, and the value of "type-of-fluid" for X is "reactor coolant";

4.1. Defining the Concept "Reactor-Outlet-Piping"
Suppose we are in a state where concepts I1)-[8) are in place, and our job is to

,lefine a concept representing a piece of piping that will carry reactor coolant away from
t re, rea-t )r. The final d(escription will have ar large number of attributes describing its
size. wkhere, it gets attached, etc.. but initially we just wish to sketch in a few features.
So, we define the concept [9] above, naming it "Reactor-Out'let-Piping". Now the

classifier goes to work:

Because IHeactor-Oiitlet-Piping has "type-of-fluid" set to Reactor-Coolant, which
is a type of Pressu rized-Fluid, it gets classified below the (unarved) concept, which is
th, first argument of the implication [5.1 Applying the implication in [5] to Reactor-
Outlet-Piping reveals that instances of Reactor-Outlet-Piping are necessarily instances
of Pressurized-Part. At this point, we may or may not elect to redefine Reactor-Outlet-
Pipig to specialize Pressurized-Part explicitly.
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lW Mlodlel hilildler', Ima-nua'l indicates that we shoild periodicnlly check the safetY
ot, our Wein. \e 10) t his IOr our coli1cept 1leactclor-Otit let-iPiping b ill .[fuiig

whthr o 10 :ul 11151:illce ()I I (:kt lOlt o-,1pllt c:In also, he :ili inst :-ultce of' 'S:I(-
Pan~~114 +~. ecfltntoil1-,,i1, tin, tol lowing l('lllitiloll.1and thl l1e1tot to) ",e it' it ha-s

3102 and Reactor-Outlel-Piping Safe-Part)

(inerpt i1tJ will clss ily tvile( con~epts [-,j and jS1. anld lieli1ce wil nhrt otI

Ii i~lrailit~ ofi :11 fle Iill tlhose ( )IliceIpts. ( om~i Ii ll t" l(ie oit liits with ti li

otl (gl1llv detlili restrwtion onl the attribuite ''uImX-raIted-pSi' v-i :I cowitr-odictiim.
Ii~i~tsihr Iiereoreliil'k-5 thle resuilting coiwept :is lico)liereit. The'11 rlIltit

ci~isiti~iii j thle (olicelIt

11' (defconcept
is (:and Reactor-Outlet-Piping Pressurized-Part Safe-Part)
;constraints (2psi 10)

(max-rated-psi 5) (<= psi max-rated-psi)
(:exactly 1 psi) (iexactly 1 max-rated-psi)
(:the type-of-fluid Reactor-Coolant)
is-incoherent))

Based on the constraints implied by this concept, the classifier wvill have cailculated
im t "psi" isoithI greater than 10 and less than 5, which is i nposisible. Wc I ia y
L erefore, det eri ined that ouir description of Reactor-IPipi ng-Oiit let is I ncomnp atible v ithI

S-afe-Part.

4.2. Discussion of the Example
Severali points are note-worthy:

" N striking feature of this example is that all of the inferences performed by
lie ckissif-er wvere applied to descripti'ons, i.e., all reasoning took place at

the "mieta-level" . As far as we know, all of the tools available today thai
lii i t he apphliedI to sueich a problem (e.g., prlodlIIticion systenms, rrame-Ibased-
syste I s;, rel atin aI I-d lb Ins- based systems, Prolog) are capablle of reasolli g

iii v- wi tIi ist antia ted (grouind-level) data.

" '1'hc knowledge I ase used in fil s exaun ple is failly-declu rativ e. Iseoilli
julst r( presenits5 an ecuiod(l lorin of a collection of axiomis in the p redic(ate
caleuluiis. Trhe ab~ility of the system to perform anialysis at the met a-level
olepitie(ls on the faet that. all of thle knowledge is represented expilicitly.

" Thie exaniliple illu1strates a cla.ssifier operating by (Hi beddingP new% e rice pts

ut i) ;ill eXistilig t axotioitiv. This exentl plifies" it I a pa h i Ii t~ r( or
clfw'; i Ica,/ onof k now ledger.

" 'I'ic remLsotiiti described illustrates sy 1i/hcic a opplYlsed to amul/b/C
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reasoning. During our classifications, additional information about Reactor-
Outlet-Piping was acquired from the rules [5], [7], and [8], whereas purely
analytic reasoning, by definition yields no new information about a concept.
The LOOM classifier, when completed, will be the first classifier capable of
synthetic reasoning.

9 Finally. our example nicely illustrates how statically defined constraints can
be used to guide the model-building process.

5. The NIKL System
The original tNL-ONE system successfully demonstrated "proof of concept," but it

ran much too slowly to be used in applications. A joint effort by researchers from ISI
and BBN produced a design for a new terminological language called NJIKL. ISI then
produced a classifier for the NIKL language that was very much faster than the IKL-
ONE classifier -- fast enough to be a valuable research tool. The benefits were
immediately realized as KL-ONE-based applications at 11SI and BBN were converted to
use NIKL.

Subsequently. lI made few modifications to the NIKL system until DARPA
funded :in new IS[ project called Empirically Valid Knowledge Representation in 1986.
One of the first tasks of the new project was to translate NIKL into Common LISP -- a
move that significantly increased its accessibility to the research community.
Accordingly, an increasing volume of requests for NIKL have come from around the
world. Appendix C lists 17 institutions that have solicited and received a copy of
NIKL.

Another task of the new project produced a graphic display capability for viewing
the concept networks produced by the NIKL classifier. The "ISI Grapher," which was
designed as a general-purpose tool, has had a fairly spectacular reception outside of ISI.
A paper on the Grapher [Robins 871 has appeared as an invited talk in Symboliikka '87,
a Finnish ..onference on user-interfac,-s and graphics, while 178 sites have expressed
interest in obtaining the ISI Grapher. The Grapher has been shipped to 50 of these
site,. This w,' :es not represent deep research, but it does represent work that has
pr.-,'tir'ally r,, i* -1 research ideas. Furthermore, the results are of direct benefit to the
research V,' ty, and have been applied in practical, technological implement.'i, '

6. Examph . of the Use and Influence of NIKL
The development of NIKL led to a rapid increase in the number of research efforts

using KL-ONE-like knowledge representation languages. The Consul user interface
management effort was the first to employ the language. The basic user interface used

the models to structure displays [Mark 81], and to supply semantics to terms used in a

forward chaining inference system. Consul also used NIL in a natural language caseframe parser where the model represented some o the lexical semantics, as well as the

case frames [Sondheier 84]. User interface research has continued with the use of
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NIIKL in a multi-modal user interface system, II [Arens 871. Natural language research
has seen N\IKI, applied in a text generation system [Sondheiiner 86] and another natural
language understanding system [Weisehedel 87]. In the two natural language efforts,
tle systems were able to share a common world model through a NIKI know)ledge base.

Parallhl applications have occurred in tile area of expert systems. The Explainable
Expert System effort used NIIKL to describe the problem domain in an effort that
produced a expert system creation system. [Neches 85] Another effort, BACKBORD. is
producing a browsin- Interface for databases or knowledge bases, which utilizes NIKL
knowledge bases to help users who are searching for information bitt n,ed. assistance ,i
formnulating a request that will retrieve exactly what they are looking for. {Yen 87] Ak
related effort. TINT, adds a notecard facility to NllKL models as a nlechaTiisin for
reducing the "brittleness" of expert systems when approaching the ,i(1ndaries of tielir
knowledge. jHarp 87]

All these applications have occurred at ISI and BBN. ISI has also interacted with
graduate students and professors who are using NIKL in their research at institutions
such as Massachusetts Institute of Technology, Carnegie Mellon University and the
University of Pennsylvania.

One of the healthiest signs of NIKL's success is the number of researchers who
,have used NIKL as a starting point for their work. KL-TWO uses NIKI, as a T-Tox to
which it added an A-Box [Vilain 85]. Brachman has related that NIKL is the standard
by which he has measured the Krypton T-Box [Brachman 85]. In part because it was
impossible to send NIKL outside the Unioed States for many years, there have been
many European imitators. Most notable are the BACK system, which shows a well-
matched T-Box and A-Box (von Luck 871 and SB-ONE, which has benefited from
extensive development. [Xtra 87].

7. The LOOM System
Th,- Empirically Valid Knowledge Representation project (introduced in Section 5)

came into existence because users of NIIL had generated a substantial list of requests
for fundanental improvements and extensions to NIKL (see [Kaczmarek 86]). The
requests were for:

" an Incremental Classifier -- users wanted to be able to modify the definitions
of already-classified concepts, and wanted the classifier to reclassify all
concepts impacted by each modification.

" an ABox and Recognizer -- while NIKL provides a competent and efficient
TBox component, thee was no ABox or recognizer available with
comparable capabilities.

* major Extensions to the Terminological Language:
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o a richer xocabulary for defining binary relations, e.g., users wanted to
be able to define inverse, transitive-closure, and composed relations;

o speei:ilized representations for Sets, Intervals, and Sequences;

o a c-p-ility for representing necessary conditions and sufficient
eM 'itions (cotnstraints).

(ons I l':'ble roes-ar, h weiit into the problem of introducing constraint knowledge
het, 'h-inssificat n p:r n. The solution required that the semantic basis of NiI,

i,,, r, vised in c r1a:r) placc-s. To indicate that significant, changes were made, the new
-tcem was oeyOq c, new niane -- LOOM.

In section 7.1, we give an account of the inference mechanism developed to reason
ab, it constraints in LOOM. This illustrates some of the research that has gone into
tihe design of the LOOM system.

7.1. The CBox
,,s already mentioned, KL-ONE-based systems have an established tradition of

making a strong distinction between terminological (TBox) knowledge and assertional
(ABox) knowledge. In order for the classifier to reason with constraints, we found it
necessary to further partition the knowledge in the ABox. Assertions about classes of
individuals will be labelled constraint knowledge and placed in a CBox, while assertions
about .single individuals will remain in the ABox.

The most useful type of constraint takes the form of an implicaticn, i.e., it has
the form "IF X is an instance of the class P THEN X is also an instance of the class
Q". In our previous examples, all uses of the implies operator or the :constraints
keyword represented specifications of implication relationships, e.g. "IF X is a
pressurized p:art T-EN X has an attribute 'max-rated-psi". 7 We have developed a new
type of classifier, called a CBox classifier, which is able to compute implication
relationships between concepts based on both definitional and constraint knowledge.
(The inferences illustrated in the Reactor Part example were mostly the result of CBox
classifications, rather than TBox classifications). Basic to a traditional classifier's
operation is that it computes the subsumption relationships between all pairs of
concepts in a network. The CBox classifier expands this paradigm by computing
implication relationships between all pairs of concepts in a network. Thus, for
example, it is easy for it to answer the "second-order" question "What terms are
implied by the term 'battle-situation'?"

The language used to express TBox knowledge is deliberately restricted so as to

7 The CBox contains other knowledge besides implications (e.g., a.sertions of disjointness). This falls
outside of the scope of our present discussion.
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exclude certain constructs (e.g., recursive definitions) that are not amenable to
classification. We repeat this technique for constraints -- the syntactic structures that
appear in LOO% :constraints or implies clauses translate into knowledge structures
for which we have developed competent classification algorithms. As we will illustrate
below, the CBox classifier utilizes the TBox classifier to perform most of its inferences.
Thus, not only is the syntax for implications similar to that for TBox knowledge (as
illustrated in the previous section), but the same data structures can be used to
represent both types of knowledge. This has the practical benefit that each new
inference capability added to the TBox classifier automatically extends to the CBox
classifier as well.

Htere, we sketch the algorithm for CBox classification:8 the computation of each
implication relationship is represented internally by an "implies" link that links a
concept C to a concept CI which represents the conjunction of all concepts implied by
C. (Before C is classified. C's definition may indicate a set of concepts that are implied
by C).

CBox Classification Algorithm:

First, tbox-classify C. Define C1 to be the conjunction of all concepts
reachable from C by following implies links (i.e., compute a transitive closure
over the implies links). Tbox-classify C1. Define C2 to be the conjunction of
all concepts implied by C1 and then tbox-classify C2. Repeat until C(k)
C(k+1). Set C1 = C(k).

A key element in the efficiency of this algorithm is that deductions made during
previous cbox-classifications are completely characterized by the "implies" links placed
in the network, with the result that no time is wasted recomputing results which were
deduced previously. Because the implies relation is reflexive, it is necessarily the case
the C(i) subsumes C(i+1) for all i's. Hence, termination of the algorithm is guaranteed.

It may not be obvious that the classification cycle needs to be repeated, i.e., that k
> 1. Ilowever, a trace of the algorithm applied to our Reactor-Part example reveals
that (depending on the order in which the network is traversed) two complete
olassifications may be necessary to determine that the concept [10] implies the concept
[7]. \Ve have produced artificial examples that show that k can be arbitrarily large;
dowever. we expect that, for real applications, it will usually turn out that the second
classification will yield no new information. Hence, we will be looking for heuristics
that recognize situations for which a single classification suffices.

8The ClBox classification algorithm implemented in LOOM is more efficient (and more complex) than
the one sketched here, but the overall inference strategy is the same.
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8. Future Plans for Knowledge Representation Research
We describe t w() dif'ertnt research directions that are planned by IS's Inowlhdge

le i~ re-.eatulotll [)roj,,ct. F ir1t. we de'e'ribe plans for future extensions to LOOM1 itseilf.
qet)nd, \ e ,t,'ri i ' !r a. lwn "a new stle of programming that uses a classifier as its

.4c co t .i nel i: n is1. This effort iS a part of the S harod t( mw ledge Represeitation
project.., which i aI fo low-on to the Em pirically-Valid Knowledge Representation

pr()je(t.

8.1. Future Vork on LOOM
\e ,viion Al i i, the character of future extensions to LOONI. away from the

rest e (,Iin pi h,- ( n :I ,-tract. mathem atical knowledge structures. and towards
niodel!in mnd rasoning ahout physical-world knowledge. Some immediato, aiidntes
for modelling include Time. location, Events, Actions, Change of State, and Collectives.
The starting point for some of these will be models already developed by other projects
within ISI.

There are two major guidelines that will constrain our modelling efforts. The first
is that whatever we produce must be, to the greatest practical extent, application-
independent. For example, we would expect that each of the other projects will have its
own notion on the best way to model Time. We will have to create a model that is
simultaneously acceptable to all of the different internal projects. The fact that at least
six other projects internal to ISI will be using LOOM in the near future offers a unusual
opportunity: a consensus among these projects relative to some construct should stand
a reasonable chance of carrying over to applications outside of ISI. The payoff, of
course, is that as these projects increase their use of commonly developed knowledge
structures, the possibilities increase for inter-communication and sharing of knowledge
across applications.

The second major modelling challenge is that each new modelling construct must
be made to fit into the classification paradigm. For example, here is how we have
already chosen to handle numeric comparisons:

Suppose we introduce two new concepts: "P50" is the set of Persons of age
at least 50, and "160 '" is the set of Persons of age at least 60. LOOM will
create two "intervals" [50..Infinity) and [60..infinity), classify the intetvals,
(iscover t hat [50..in'i ty)subsumes [60..In i nily), and t en conchc(leC that P'50
s!UbsItlnes N50.

In tiwi abov, e'xamnple, ILOO'M haniled t1teric 'otprisou by e Crtitig therm to
nli tn ric i t erva ls, and then handing the problem, over to :, I'flSOir tihat iinlderstanlds

intervals. The point here is that adding a new e.,p:,bihiiy t I,()ONI involves more than
just :agreing on a f'ew (lata structures. .\ precise seulnl 5tiist be formulated.

tusuil'y, sone special-purpose algoritlins must 1we developfl: :tl care must hew taken
that, new primitives are orthogonal to the existing ones. (iit,rn ally, the classifier relies
on achieving a canonical representation for its ktuowledge Si ru(tures -- this requireiuent
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is defeated if redundancy or overlap creeps into its set of primitive constructs.)

The resulting payoff is that a careful implementation of a knowledge structure
will allow LOOM to reason competently and efficiently in that new domain, and it will
allow that new reasoning capability to blend-in smoothly with other specialized
reasoners. The classification paradigm appears to provide a very good medium for
installing and integrating multiple domain-specific reasoners.

8.2. Classification-based Programming
There have already been systems written (within the CONSUL [Mark 81] and EES

(Swartout and Neches 861 projects) that demonstrate how the control portion of a
program can be implemented with a classifier. 9  Such programs are "classification-
based." The increased expressive power of LOOM allows us to encode a greater
percentage of our program in terms of LOOM constructs -- the goal is that the "core"
of an application program can be coded entirely within a LOOM-like language. The
long-range goal of this research is to produce a new programming technology superior to
the rule-based technology in use today.

In this section, we briefly characterize the kinds of inferences made by the LOOM
classifier, and then discuss how we are planning to employ this reasoning capability
within the context of a general programming environment.

Cast into t logic framework, the definitions found in a TBox map into bi-
conditional propositions. Thus, a classifier's forte is reasoning with bi-conditionals --
something that many logic-based systems (e.g., Prolog) find difficult or impossible. A
major achievement of the LOOM system is that it incorporates ordinary conditionals
into the classification framework (where they are referred to as "implications"). The
inferences drawn by the LOOM classifier are all "forward" inferences -- whenever new
knowledge is introduced into the system, LOOM's response is to immediately compute
all other new propositions implied by that new bit of knowledge. The results of these
computations are most often preserved as semantic links placed between nodes in the
network, where each link represents an instance of a deduced relationship. (LOOM's
repertoire currently includes subsumption, implication, inverse, and transitive-closure
links).

\Ve expect that this characterization of LOOM's reasoning capabilities will remain
invriant as LOOM evolves to incorporate additional modes of special-purpose
reasoning. In particular, while the reasoning power of LOOM will continue to increase,
the system will never on its own achieve Turing-completeness. Therefore, to program
with LOOM, it is necessary that a Turing-complete language (e.g., LISP) be interfaced
with LOOM, resulting in a hybrid programming language.

9 The NIKL classifier was used in both of these projects.
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Conceptually. the LOOM recognizer is designed to react immediately to each
'':i e in its k, ioledge base, and it is able to determine (iodulo incompleteness) all

d.s ,i:, ,ees of(I' e:h c hange. \Ve expect to find this behavior valuable for such
Fi*:) , . ,Lis,'ret, sinulation and process control. Tbhus, while current applications

'' 'Itt:ms.Itte, rec'll oJo-%- -ill lie within the donain ol Al, we expect other non-Al
at, .i .,, a ill hrticl as we)) once the technology bhas rea che't a suffic(et state of

The [ ()OONt recognizer calL be viewed as a powerful and efficient pattern inatcher
it a: :i' h . ,a new inst ce (dat in) with all concepts (patteriis) in T-,,,x. It is

wer't'u becaise te rnathi ng process is based on the semantics, rather th ian the
K 'i,,a., of the data and the patterns. The recognizer is efficient because (1) the

PtA*v*ei'rns ar( organized into a taxonomy (analogous to the RETE pattern nets existing
pr,-ductIC, i systems), and (2, the recognizer only needs to consider those patterns that
nr, semantie'ally relevant to the datum. Recently, we have produced (in conjunction
%%ith the ISlI's FAST and EASES projects) a preliminary design for a classification-
driven production system that uses the LOOM recognizer as its pattern matcher.

lhe architecture of a classification-triggered production sy: tem differs from
(',nventional one in that, the system is triggered by new classifications rather than by
the recognize-select-execute cycles. The condition of each production is represented as a
class. Thus, when an instance gets classified under a class, all productions whose
conditions are the class get instantiated and passed to an external production manager
that selects and executes the instantiated productions.

The future work of this research includes (1) defining a language to express
production rules, (2) specifying the interface between LOOM and the production
manager (which will be designed and implemented under the FAST and EASES
projects), and (3) implementing the productions in LOOM. As a test bed, the FAST
project will apply the production system to building an expert system for recognizing
bad part numbers. Eventually, integrating the reasoning capabilities of LOOM into the
production system architecture will generate a new programing environment that
facilitates representation, reasoning, and acting on various kinds of knowledge in AJ
systems.

9. Summary
We have presented an informal standard for evaluating the competence of a

knowledge representation system. Our most stringent criterion is that a knowledge
representation system should demonstrate inferential competence for both
termiriological and assertional knowledge.

The classification-based knowledge representation systems that trace their
ancestry back to KL-ONE are developing a promising technology to yield systems that
exhibit inferential ,ormpetailce and are efficient enough to be used in practical
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applications. The classification paradigm is proving to be a good medium for
embedding multiple efficient, domain-specific reasoners.

ISI is playing a major role in advancing the state of the art in classification-based
systems, and in delivering practical implementations of this technology. The NIKL
classifier proided the first example of a practical termihiological reasoner. Research
that has gone into LOOM, the successor to NIKL, has considerably widened the scope of
inferences that can be captured within the classification paradigm. Among LOOM's
innovations will be the ability to compute all implication relationships between terms in
a taxonomic nitwcrk. LOOM will exhibit significantly more comprehensive inferential
capabilities than its predecessor, while retaining the efficient classification algorithms
that went into the NIKL system. LOOM will find immediate application in a number
of on-going research projects at ISI, and has sparked the interest of a number of Al
research sites outside of ISI.
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A. LOOM Semantics

Summary of LOOM Expression Operators

Conunecti es
(:and C ... C) the conjunction of concepts/relations C1 ... Cj

(or C 1 ... CI) the union of concepts/relations C ... C,

(: not C) the complement of the concept/relation C

Concept Expressions
prami tive a unique primitive concept
at-least k R) the role R has at least k values

(:at--most k R) the role ft has at most k values
:exactly k R) the role R has exactly k values

:all I? C) all values of the role R have type C
:some I? C) at least one value of the role ft has type C

(:the I? C) " role R has exactly 1 value, and it has type C
(:same-as t1 ... Rj) roles R, ... Rj have identical values

(REL R, ... I i) the relation/operator REL is satisfied by the
values of the roles R ... R

Relation Expressions
:primitive a unique primitive relation
(:domain C) the domain fillers have type C
(:range C) the range fillers have type C
(:inverse R) the inverse of the relation R
(:lambda (args) .body) a (primitive) operator relation

Relation Attributes (for a relation R)
:single-valued (R(x,y) A R(x,z)) implies y = z

:closed-world closed-world semantics apply to R's role fillers
:symmetric f(x,y) = R(y,x)

:sequence R's role fillers form a sequence

Set E'xprcssions
(: symbols 5, ... S)) the set of symbolic literals {S.
(:instances I, ... I,) the set of database instances {J1 ... 1,}

Interval Fxpressions
(:through .51 ... Si) the set of scalars between S, and 5,, inclusive
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C. NIKL Users

N INL heo s I ls aI1( t thim ui' aizat ions: listed helow:

t"iix of~i -u o~ e(il iforii 151
Bolt, liranek and N ewman, M.-kn I

N If~-aliUCt S lst itute of Technoclogy

Carniwo- N ellon University
Lockliee I A\i Center Menlo Park, CA
Conuan11t Institutie of Mfath. cci., New York University, New York
MCC, Azistin Texas
The MI1TRE Corporation, Bedford, MA
San Francisco State University
University of Florida, Gainesville, FL
Uni1versity of Pennsylvania, Philadelphia, Penn.
St. Patrick's College, Dublin, Republic of Ireland
Technische Universitat Berlin, Federal Rep ublic of Germany
UNISYS, Paoli, Penn.
I,iuiversity of Lee is, Eng-land, United Kingdom
University of Saarbruecken, Federal Republic of Germany
Whitney/Demos Productions, Culver City, CA
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